MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 9 - SOLUTIONS

Problem 1 (30 points). Let $a=d_{0}<d_{1}<d_{2}<\cdots<d_{k}=b$ be a finite list, $g_{i}:\left[d_{i}, d_{i+1}\right] \rightarrow \mathbb{R}$ be a continuous function for every $i=1, \ldots, k$, and $f:[a, b] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=g_{i}(x) \quad \text { when } x \in\left[d_{i}, d_{i+1}\right)
$$

and $f(b)=g_{k}(b)$. Show that f is integrable.
Solution. Fix $\varepsilon>0$. Since each g_{i} is continuous it is bounded, and the list is finite, there exists a common bound B such that $|f(x)| \leq B$ for all $x \in[a . b]$. Choose a partition \mathcal{P}_{i} of $\left[d_{i}, d_{i+1}\right]$ such that $U\left(g_{i}, \mathcal{P}_{i}\right)-L\left(g_{i}, \mathcal{P}_{i}\right)<\varepsilon / 2 k$. Without loss of generality, by adding the element $d_{i+1}-\varepsilon /(4 B k)$ as necessary, we may assume that the last subinterval of \mathcal{P}_{i} has length at most $\varepsilon /(4 B k)$. Then since f agrees with g_{i} on $\left[d_{i}, d_{i+1}\right]$ except at d_{i+1}, it follows that
$U(f, \mathcal{P})-L(f, \mathcal{P})<\left[\sum_{i=1}^{k} U\left(g_{i}, \mathcal{P}_{i}\right)-L\left(g_{, i}, \mathcal{P}_{i}\right)\right]+k \cdot \varepsilon /(4 B k) \cdot(B-(-B)) \leq k \cdot(\varepsilon / 2 B)+\varepsilon / 2=\varepsilon$

Problem 2 (30 points). Let u and v be continuously differentiable functions on $[a, b]$, and V be an antiderivative of v. Show that

$$
\int_{a}^{b} u v d x=u(b) V(b)-u(a) V(a)-\int_{a}^{b} V u^{\prime} d x
$$

[Hint: Apply the fundamental theorems to the fuction $H(y)=\int_{a}^{y} u v d x$]
Solution. Consider the funciton $H(y)=\int_{a}^{y} u v d x$. Then since $u v$ is continuous, H is continuously differentiable and $H^{\prime}(y)=u(y) v(y)$ for all $y \in(a, b)$, and $H(a)=0$. Let $G(y)=u(y) V(y)-$ $u(a) V(a)-\int_{a}^{y} V(x) u^{\prime}(x) d x$. Then $G(a)=u(a) V(a)-u(a) V(a)+\int_{a}^{a} V(x) u^{\prime}(x) d x=0$ and

$$
G^{\prime}(y)=\left(u^{\prime}(y) V(y)+u(y) V^{\prime}(y)\right)-V(y) u^{\prime}(y)=u(y) V^{\prime}(y)=u(y) v(y)
$$

Since antiderivatives are unique up to a constant and $G(a)=H(a)$, it follows that $H=G$ as functions on $[a, b]$. The desired equality is exactly $G(b)=H(b)$.

Problem 3 (40 points). Let $f_{n}:(a, b) \rightarrow \mathbb{R}$ be a sequence of functions on an open interval (a, b). For each, prove or find a counterexample:
(a) If each f_{n} is bounded, and $f_{n} \rightarrow f$ pointwise, then f is bounded.
(b) If each f_{n} is bounded, and $f_{n} \rightarrow f$ uniformly, then f is bounded.

Solution. (a) This is false. Consider the piecewise functions defined on $(0,1)$ by

$$
f_{n}(x)= \begin{cases}n^{2} x, & 0<x<1 / n \\ 1 / x, & 1 / n \leq x \leq 1\end{cases}
$$

Then each f_{n} is bounded, the bound given exactly by n. But f_{n} converges to $1 / x$ pointwise, since for each individual x, the function $f_{n}(x)$ is equal to $1 / x$ for $n \geq 1 / x$. Crucially, since the bound on n needs to depend on x, f_{n} does not converge uniformly.
(b) This is true. Indeed, if $f_{n} \rightarrow f$ uniformly, then there exists an N such that if $n \geq N$, $\left|f_{n}(x)-f(x)\right| \leq 1$ for all $x \in(a, b)$. Since f_{N} is bounded, there exists some B such that $\left|f_{N}(x)\right| \leq B$ for all $x \in(a, b)$. Then

$$
|f(x)|=\left|f(x)-f_{N}(x)+f_{N}(x)\right| \leq\left|f_{N}(x)-f(x)\right|+\left|f_{N}(x)\right| \leq 1+B
$$

So $1+B$ is a bound for f.

